These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. Author: Poulin JF, Amiot J, Bazinet L. Journal: J Biotechnol; 2006 May 29; 123(3):314-28. PubMed ID: 16412527. Abstract: beta-Lactoglobulin (beta-lg), one of the major whey components, can release by enzymatic hydrolysis different bioactive peptidic sequences according to the enzyme used. However, these protein hydrolysates have to be fractionated to obtain peptides in a more purified form. The aim of the present work was to evaluate the feasibility of separating peptides from a beta-lg hydrolysate using an ultrafiltration (UF) membrane stacked in an electrodialysis (ED) cell and to study the effect of pH on the migration of basic/cationic and acid/anionic peptides in the ED configuration. Electrodialysis with ultrafiltration membrane (EDUF) appeared to be a selective method of separation since amongst a total of 40 peptides in the raw hydrolysate, only 13 were recovered in the separated adjacent solutions (KCl 1 and KCl 2). Amongst these 13 migrating peptides, 3 acid/anionic peptides migrated only in one compartment (KCl 1), while 3 basic/cationic peptides migrated only in the second compartment (KCl 2) and that whatever the pH conditions of the hydrolysate solution. Furthermore, the highest migration was obtained for the ACE-inhibitory peptide beta-lg 142-148, with a value of 10.75%. The integrity of the UF membrane was kept and EDUF would minimize the fouling of UF membrane.[Abstract] [Full Text] [Related] [New Search]