These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen receptor-alpha mediates acute myocardial protection in females. Author: Wang M, Crisostomo P, Wairiuko GM, Meldrum DR. Journal: Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2204-9. PubMed ID: 16415070. Abstract: Sex differences in myocardial recovery have been reported after acute ischemia and reperfusion injury. Estrogen and the estrogen receptor are critical determinants of cardiovascular sex differences. However, the mechanistic pathways responsible for these differences remain unknown. We hypothesized that estrogen receptor-alpha is an important modulator of 1) myocardial functional recovery after ischemia and 2) inflammatory signaling via MAPK. To study this, adult male and female wild-type (WT) and estrogen receptor-alpha knockout (ER1KO) mouse hearts were isolated, perfused via Langendorff model, and subjected to 20 min of ischemia and 60 min of reperfusion. Myocardial contractile function (left ventricular developed pressure and positive and negative first derivative of pressure) was continuously recorded. After ischemia-reperfusion, hearts were assessed for expression of inflammatory cytokines (ELISA) and activation of MAPK and caspase-3 (Western blot analysis). Data were analyzed with two-way ANOVA or Student's t-test, and P < 0.05 was statistically significant. ER1KO females exhibited significantly less functional recovery than WT females and were similar to WT males. Activated ERK was increased in female WT hearts compared with female ER1KO. Activated JNK was decreased in female WT hearts compared with female ER1KO. No significant differences were found between male WT, female WT, male ER1KO, and female ER1KO in activated p38 MAPK, proinflammatory cytokine expression, and proapoptotic signaling. Estrogen receptor-alpha plays a role in the protection observed in the female heart. Differential activation of MAPK may mediate this protection. Further studies are necessary to delineate these mechanistic pathways.[Abstract] [Full Text] [Related] [New Search]