These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Author: Hao G, Derakhshan B, Shi L, Campagne F, Gross SS. Journal: Proc Natl Acad Sci U S A; 2006 Jan 24; 103(4):1012-7. PubMed ID: 16418269. Abstract: Reversible addition of NO to Cys-sulfur in proteins, a modification termed S-nitrosylation, has emerged as a ubiquitous signaling mechanism for regulating diverse cellular processes. A key first-step toward elucidating the mechanism by which S-nitrosylation modulates a protein's function is specification of the targeted Cys (SNO-Cys) residue. To date, S-nitrosylation site specification has been laboriously tackled on a protein-by-protein basis. Here we describe a high-throughput proteomic approach that enables simultaneous identification of SNO-Cys sites and their cognate proteins in complex biological mixtures. The approach, termed SNOSID (SNO Site Identification), is a modification of the biotin-swap technique [Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. (2001) Nat. Cell. Biol. 3, 193-197], comprising biotinylation of protein SNO-Cys residues, trypsinolysis, affinity purification of biotinylated-peptides, and amino acid sequencing by liquid chromatography tandem MS. With this approach, 68 SNO-Cys sites were specified on 56 distinct proteins in S-nitrosoglutathione-treated (2-10 microM) rat cerebellum lysates. In addition to enumerating these S-nitrosylation sites, the method revealed endogenous SNO-Cys modification sites on cerebellum proteins, including alpha-tubulin, beta-tubulin, GAPDH, and dihydropyrimidinase-related protein-2. Whereas these endogenous SNO proteins were previously recognized, we extend prior knowledge by specifying the SNO-Cys modification sites. Considering all 68 SNO-Cys sites identified, a machine learning approach failed to reveal a linear Cys-flanking motif that predicts stable transnitrosation by S-nitrosoglutathione under test conditions, suggesting that undefined 3D structural features determine S-nitrosylation specificity. SNOSID provides the first effective tool for unbiased elucidation of the SNO proteome, identifying Cys residues that undergo reversible S-nitrosylation.[Abstract] [Full Text] [Related] [New Search]