These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transport of airborne particles within a room.
    Author: Richmond-Bryant J, Eisner AD, Brixey LA, Wiener RW.
    Journal: Indoor Air; 2006 Feb; 16(1):48-55. PubMed ID: 16420497.
    Abstract:
    The objective of this study is to test a technique used to analyze contaminant transport in the wake of a bluff body under controlled experimental conditions for application to aerosol transport in a complex furnished room. Specifically, the hypothesis tested by our work is that the dispersion of contaminants in a room is related to the turbulence kinetic energy and length scale. This turbulence is, in turn, determined by the size and shape of furnishings within the room and by the ventilation characteristics. This approach was tested for indoor dispersion through computational fluid dynamics simulations and laboratory experiments. In each, 3 mum aerosols were released in a furnished room with varied contaminant release locations (at the inlet vent or under a desk). The realizable k approximately epsilon model was employed in the simulations, followed by a Lagrangian particle trajectory simulation used as input for an in-house FORTRAN code to compute aerosol concentration. For the experiments, concentrations were measured simultaneously at seven locations by laser photometry, and air velocity was measured using laser Doppler velocimetry. The results suggest that turbulent diffusion is a significant factor in contaminant residence time in a furnished room. This procedure was then expanded to develop a simplified correlation between contaminant residence time and the number of enclosing surfaces around a point containing the contaminant. Practical Implications The work presented here provides a methodology for relating local aerosol residence time to properties of room ventilation and furniture arrangement. This technique may be used to assess probable locations of high concentration by knowing only the particle release location, furniture configuration, inlet and outlet locations, and air speeds, which are all observable features. Applications of this method include development of 'rules of thumb' for first responders entering a room where an agent has been released and selection of sampler locations to monitor conditions in sensitive areas.
    [Abstract] [Full Text] [Related] [New Search]