These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Author: Harris RB, Palmondon J, Leshin S, Flatt WP, Richard D. Journal: Horm Behav; 2006 May; 49(5):615-25. PubMed ID: 16423352. Abstract: Rats exposed to restraint stress for 3 h on each of 3 days lose weight and do not return to the weight of their non-stressed controls for extended periods of time. Studies described here demonstrate that the initial weight loss is associated with increased energy expenditure and reduced food intake on the days of restraint but that there is no difference between stressed and control rats once stress ends. The failure to compensate for this energy deficit accounts for the sustained reduction in weight which lasts for up to 80 days after the end of restraint. In an additional experiment, in situ hybridization was used to measure mRNA expression of corticotrophin releasing factor (CRF) and CRF receptors in hypothalamic nuclei, of urocortin (UCN) in the Edinger Westphal nucleus and of UCN III in the rostral perifornical area and medial amygdaloidal nucleus. Immediately after the second 3 h bout of restraint stress, there was a significant increase in expression of UCN in the Edinger Westphal nucleus and of CRF-R1 in the paraventricular nucleus of the hypothalamus and a less pronounced decrease in CRF-R2 expression in the ventromedial nucleus of the hypothalamus. There were no differences in expression of stress-related peptides or their receptors 40 days after the end of repeated restraint. These results suggest that the sustained reduction in body weight and increased responsiveness to subsequent stressors in rats that have been exposed to repeated restraint are not associated with prolonged changes in mRNA expression of CRF receptors or their ligands.[Abstract] [Full Text] [Related] [New Search]