These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metal ion and antioxidant alterations in leaves between different sexes of Ginkgo biloba L.
    Author: Stefanovits-Bányai E, Szentmihályi K, Hegedus A, Koczka N, Váli L, Taba G, Blázovics A.
    Journal: Life Sci; 2006 Feb 02; 78(10):1049-56. PubMed ID: 16423371.
    Abstract:
    A comparative study was carried out to determine some valuable phytochemical components, macro- and microelement and redox parameters in leaves of male and female Ginkgo biloba trees and in extracts made from them. G. biloba extracts have become more popular as a therapeutic agent in the modern pharmacology in neurodegenerative diseases, in which increased brain metal levels can be observed and free radical reactions are involved. Macro- and microelement components, total phenol content, H-donating activity and reducing power as well as total scavenger capacity were determined in the samples. Well detectable differences were obtained for micro- and macroelement contents between male and female samples, but no toxic elements could be detected in the extracts. Male extracts contained more hazardous metals (e.g. Fe) compared to the female ones, while extracts from female leaves had higher levels of ions, which are known to have beneficial effects in neurodegenerative diseases. The ethanolic extracts of male leaves showed the highest H-donating activity, reducing power and total phenol content, as well as the best total scavenger activity. Ginkgo extracts due to the antioxidant properties may have favourable effects as dietary supplements in several neurodegenerative diseases, but this study draws the attention that critical evaluation is required in view of the potential hazard induced by their metal ion constitution. Our results lead us to the conclusion that although the aqueous extracts of female leaves are characterized by relatively lower antioxidant properties, they may be more eligible for these purposes due to their favourable metal ion constitution.
    [Abstract] [Full Text] [Related] [New Search]