These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different roles of two nitric oxide activated pathways in spinal long-term potentiation of C-fiber-evoked field potentials. Author: Zhang XC, Zhang YQ, Zhao ZQ. Journal: Neuropharmacology; 2006 May; 50(6):748-54. PubMed ID: 16427664. Abstract: There is accumulating evidence implicating the involvement of nitric oxide (NO) in spinal central sensitization. The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of sensitization of nociceptive neurons in the spinal cord. The present study examined the roles of soluble guanylate cyclase (sGC) or ADP-ribosyltransferase (ADPRT), two potential NO targets, in spinal LTP. The results showed that (1) administration of sGC inhibitors, methyl blue (MB, 4mM, 20 microl) or 1H-[1,2,4]oxadiazolo[4,3-a]-quiloxalin-1-one (ODQ, 10 microM, 20 microl) before tetanic stimulation, significantly inhibited the induction of spinal LTP, and this was reversed by 8-Br-cGMP, a membrane-permeable cGMP analog. However, the maintenance of spinal LTP was not changed when application of ODQ 2h after tetanic stimulation. (2) Although our previous experiments have identified a key role for NO in the induction of spinal LTP, NO synthase (NOS) inhibitor, L-NAME (1mM, 20 microl) or hemoglobin (2mg/ml, 20 microl), a scavenger of NO, had no effect on established spinal LTP when applied 2h after the induction of spinal LTP. (3) The mono-ADPRT inhibitor, nicotinamide (10mM, 20 microl), had no effect on the induction and maintenance of spinal LTP. However, the poly-ADPRT inhibitor, benzamide (100 microM, 20 microl), inhibited its maintenance, but not its induction. The results suggest that NO-stimulated guanylyl cyclase activity plays a critical role in the induction of LTP of C-fiber-evoked field potentials in the spinal cord, whereas NO-related poly-ADPRT activity contributes to the maintenance of spinal LTP.[Abstract] [Full Text] [Related] [New Search]