These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of blood donation on O2 uptake on-kinetics, peak O2 uptake and time to exhaustion during severe-intensity cycle exercise in humans. Author: Burnley M, Roberts CL, Thatcher R, Doust JH, Jones AM. Journal: Exp Physiol; 2006 May; 91(3):499-509. PubMed ID: 16431932. Abstract: We hypothesized that the reduction of O2-carrying capacity caused by the withdrawal of approximately 450 ml blood would result in slower phase II O2 uptake (VO2) kinetics, a lower VO2peak and a reduced time to exhaustion during severe-intensity cycle exercise. Eleven healthy subjects (mean +/- S.D. age 23 +/- 6 years, body mass 77.2 +/- 11.0 kg) completed 'step' exercise tests from unloaded cycling to a severe-intensity work rate (80% of the difference between the predetermined gas exchange threshold and the VO2peak) on two occasions before, and 24 h following, the voluntary donation of approximately 450 ml blood. Oxygen uptake was measured breath-by-breath, and VO2 kinetics estimated using non-linear regression techniques. The blood withdrawal resulted in a significant reduction in haemoglobin concentration (pre: 15.4 +/- 0.9 versus post: 14.7 +/- 1.3 g dl(-1); 95% confidence limits (CL): -0.04, -1.38) and haematocrit (pre: 44 +/- 2 versus post: 41 +/- 3%; 95% CL: -1.3, -5.1). Compared to the control condition, blood withdrawal resulted in significant reductions in VO2peak (pre: 3.79 +/- 0.64 versus post: 3.64 +/- 0.61 l min(-1); 95% CL: -0.04, - 0.27) and time to exhaustion (pre: 375 +/- 129 versus post: 321 +/- 99 s; 95% CL: -24, -85). However, the kinetic parameters of the fundamental VO2 response, including the phase II time constant (pre: 29 +/- 8 versus post: 30 +/- 6 s; 95% CL: 5, -3), were not altered by blood withdrawal. The magnitude of the VO2 slow component was significantly reduced following blood donation owing to the lower VO2peak attained. We conclude that a reduction in blood O2-carrying capacity, achieved through the withdrawal of approximately 450 ml blood, results in a significant reduction in VO2peak and exercise tolerance but has no effect on the fundamental phase of the VO2 on-kinetics during severe-intensity exercise.[Abstract] [Full Text] [Related] [New Search]