These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A topological substructural approach for the prediction of P-glycoprotein substrates. Author: Cabrera MA, González I, Fernández C, Navarro C, Bermejo M. Journal: J Pharm Sci; 2006 Mar; 95(3):589-606. PubMed ID: 16432877. Abstract: A topological substructural molecular design approach (TOPS-MODE) has been used to predict whether a given compound is a P-glycoprotein (P-gp) substrate or not. A linear discriminant model was developed to classify a data set of 163 compounds as substrates or nonsubstrates (91 substrates and 72 nonsubstrates). The final model fit the data with sensitivity of 82.42% and specificity of 79.17%, for a final accuracy of 80.98%. The model was validated through the use of an external validation set (40 compounds, 22 substrates and 18 nonsubstrates) with a 77.50% of prediction accuracy; fivefold full cross-validation (removing 40 compounds in each cycle, 80.50% of good prediction) and the prediction of an external test set of marketed drugs (35 compounds, 71.43% of good prediction). This methodology evidenced that the standard bond distance, the polarizability and the Gasteiger-Marsilli atomic charge affect the interaction with the P-gp; suggesting the capacity of the TOPS-MODE descriptors to estimate the P-gp substrates for new drug candidates. The potentiality of the TOPS-MODE approach was assessed with a family of compounds not covered by the original training set (6-fluoroquinolones), and the final prediction had a 77.7% of accuracy. Finally, the positive and negative substructural contributions to the classification of 6-fluoroquinolones, as P-gp substrates, were identified; evidencing the possibilities of the present approach in the lead generation and optimization processes.[Abstract] [Full Text] [Related] [New Search]