These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of silicon oxidation on long-term cell selectivity of cell-patterned Au/SiO2 platforms.
    Author: Veiseh M, Zhang M.
    Journal: J Am Chem Soc; 2006 Feb 01; 128(4):1197-203. PubMed ID: 16433536.
    Abstract:
    Cellular patterning on silicon platforms is the basis for development of integrated cell-based biosensing devices, for which long-term cell selectivity and biostability remain a major challenge. We report the development of a silicon-based platform in a metal-insulator format capable of producing uniform and biostable cell patterns with long-term cell selectivity. Substrates patterned with arrays of gold electrodes were surface-engineered such that the electrodes were activated with fibronectin to mediate cell attachment and the silicon oxide background was passivated with PEG to resist protein adsorption and cell adhesion. Three types of oxide surfaces, i.e., native oxide, dry thermally grown oxide, and wet thermally grown oxide, were produced to illustrate the effect of oxide state of the surface on long-term cell selectivity. Results indicated that the cell selectivity over time differed dramatically among three patterned platforms and the best cell selectivity was found on the dry oxide surface for up to 10 days. Surface analysis results suggested that this enhancement in cell selectivity may be related to the presence of additional, more active oxide states on the dry oxide surface supporting the stability of PEG films and effectively suppressing the cell adhesion. This research offers a new strategy for development of stable and uniform cell-patterned surfaces, which is versatile for immobilization of silane-based chemicals for preparation of biostable interfaces.
    [Abstract] [Full Text] [Related] [New Search]