These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational insights into the mechanism of radical generation in B12-dependent methylmalonyl-CoA mutase.
    Author: Kwiecien RA, Khavrutskii IV, Musaev DG, Morokuma K, Banerjee R, Paneth P.
    Journal: J Am Chem Soc; 2006 Feb 01; 128(4):1287-92. PubMed ID: 16433547.
    Abstract:
    ONIOM calculations have provided novel insights into the mechanism of homolytic Co-C5' bond cleavage in the 5'-deoxyadenosylcobalamin cofactor catalyzed by methylmalonyl-CoA mutase. We have shown that it is a stepwise process in which conformational changes in the 5'-deoxyadenosine moiety precede the actual homolysis step. In the transition state structure for homolysis, the Co-C5' bond elongates by approximately 0.5 Angstroms from the value found in the substrate-bound reactant complex. The overall barrier to homolysis is approximately 10 kcal/mol, and the radical products are approximately 2.5 kcal/mol less stable than the initial ternary complex of enzyme, substrate, and cofactor. The movement of the deoxyadenosine moiety during the homolysis step positions the resulting 5'-deoxyadenosyl radical for the subsequent hydrogen atom transfer from the substrate, methylmalonyl-CoA.
    [Abstract] [Full Text] [Related] [New Search]