These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ab initio kinetics for the unimolecular reaction C6H5OH --> CO + C5H6.
    Author: Xu ZF, Lin MC.
    Journal: J Phys Chem A; 2006 Feb 02; 110(4):1672-7. PubMed ID: 16435831.
    Abstract:
    The unimolecular decomposition of C(6)H(5)OH on its singlet-state potential energy surface has been studied at the G2M//B3LYP/6-311G(d,p) level of theory. The result shows that the most favorable reaction channel involves the isomerization and decomposition of phenol via 2,4-cyclohexadienone and other low-lying isomers prior to the fragmentation process, producing cyclo-C(5)H(6) + CO as major products, supporting the earlier assumption of the important role of the 2,4-cyclohexadienone intermediate. The rate constant predicted by the microcanonical RRKM theory in the temperature range 800-2000 K at 1 Torr--100 atm of Ar pressure for CO production agrees very well with available experimental data in the temperature range studied. The rate constants for the production of CO and the H atom by O-H dissociation at atmospheric Ar pressure can be represented by k(CO) = 8.62 x 10(15) T(-0.61) exp(-37,300/T) s(-1) and k(H) = 1.01 x 10(71) T(-15.92) exp(-62,800/T) s(-1). The latter process is strongly P-dependent above 1000 K; its high- and low-pressure limits are given.
    [Abstract] [Full Text] [Related] [New Search]