These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids.
    Author: Palmié-Peixoto IV, Rocha MR, Urbina JA, de Souza W, Einicker-Lamas M, Motta MC.
    Journal: FEMS Microbiol Lett; 2006 Feb; 255(1):33-42. PubMed ID: 16436059.
    Abstract:
    Some protozoa of the Trypanosomatidae family have a close relationship with an endosymbiotic bacterium. As the prokaryote envelope has a controversial origin, a sterol 24-methyltransferase inhibitor (20-piperidin-2-yl-5alpha-pregnan-3beta,20-diol; 22,26-azasterol) was used as a tool to investigate lipid biosynthetic pathways in Crithidia deanei, an endosymbiont-bearing trypanosomatid. Apart from antiproliferative effects, this drug induced ultrastructural alterations, consisting of myelin-like figures in the cytoplasm and endosymbiont envelope vesiculation. Concurrently, a dramatic reduction of 24-alkyl sterols was observed after 22,26-azasterol treatment, both in whole cell homogenates, as well as in isolated mitochondria. These effects were associated with changes of phospholipid composition, in particular a reduction of the phosphatidylcholine content and a concomitant increase in phosphatidylethanolamine levels. Lipid analyses of purified endosymbionts indicated a complete absence of sterols, and their phospholipid composition was different from that of mitochondria or whole protozoa, being similar to eubacteria closely associated with eukaryotes.
    [Abstract] [Full Text] [Related] [New Search]