These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. Author: Weber P, Fulgosi H, Piven I, Müller L, Krupinska K, Duong VH, Herrmann RG, Sokolenko A. Journal: J Mol Biol; 2006 Mar 24; 357(2):535-49. PubMed ID: 16438983. Abstract: We describe the identification of a novel chloroplast protein, designated TCP34 (tetratricopeptide-containing chloroplast protein of 34 kDa) due to the presence of three tandemly arranged tetratricopeptide repeat (TPR) arrays. The presence of the genes encoding this protein only in the genomes of higher plants but not in photosynthetic cyanobacterial prokaryotes suggests that TCP34 evolved after the separation of the higher plant lineage. The in vitro translated precursor could be imported into intact spinach chloroplasts and the processed products showed stable association with thylakoid membranes. Using a specific polyclonal antiserum raised against TCP34, three protein variants were detected. Two forms, T(1) and T(2), were associated with the thylakoid membranes and one, S(1), was found released in the stroma. TCP34 protein was not present in etioplasts and appeared only in developing chloroplasts. The ratio of membrane-bound and soluble forms was maximal at the onset of photosynthesis. The high molecular mass thylakoid TCP34 variant was found in association with a transcriptionally active protein/DNA complex (TAC) from chloroplasts and recombinant TCP34 showed specific binding to Spinacia oleracea chloroplast DNA. Two TCP34 forms, T(1) and S(1), were found to be phosphorylated. An as yet unidentified phosphorelay signal may modulate its capability for plastid DNA binding through the phosphorylation state of the putative response regulator-like domain. Based on the structural properties and biochemical analyses, we discuss the putative regulatory function of TCP34 in plastid gene expression.[Abstract] [Full Text] [Related] [New Search]