These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A secretion granule membrane protein (GRAMP 92) is found in non-granule membranes including those of the endocytic pathway. Author: Laurie SM, Mixon MB, Brand SH, Castle JD. Journal: Eur J Cell Biol; 1992 Jun; 58(1):12-27. PubMed ID: 1644058. Abstract: GRAMP 92, a secretion granule-associated membrane protein, has been identified in exocrine and endocrine storage granule membranes using a monoclonal antibody against rat parotid secretion granule membranes. This integral membrane glycoprotein has a M(r) of 92,000 in pancreatic zymogen granule membranes, and is slightly smaller in endocrine granule membranes. In both cases, deglycosylation produces core proteins of M(r) 52,000, that have identical peptide fingerprints. Unlike the slightly smaller zymogen granule membrane glycoprotein GP-2, GRAMP 92 does not appear to be bound to the membrane by a glycophosphatidyl inositol anchor, is not found on the plasma membrane and is not released into the secretion. Within acinar cells, low levels of antigen are observed immunocytochemically over the membranes of most granules. Antigen is highly concentrated on small vesicles that are closely apposed to (and possibly interact with) granules. As well, antigen is localized to organelles in the Golgi and basolateral regions that are part of the endocytic pathway. In hepatocytes a glycoprotein similar if not identical to GRAMP 92 marks the endocytic pathway including lysosomes. These findings indicate that GRAMP 92 is a widely distributed endocytic component and suggest that cells specialized for regulated secretion may adapt such components for storage granule function. Granule-associated GRAMP 92-rich membranes may link the exocytotic and endocytic pathways.[Abstract] [Full Text] [Related] [New Search]