These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reciprocal and coactivation commands for fast wrist movements.
    Author: Levin MF, Feldman AG, Milner TE, Lamarre Y.
    Journal: Exp Brain Res; 1992; 89(3):669-77. PubMed ID: 1644129.
    Abstract:
    According to the equilibrium-point hypothesis, movements are produced by means of displacement of the invariant torque/angle characteristic (IC) of the joint and change in its slope. Displacement is produced via the central reciprocal (R) command while the coactivation (C) command specifies the slope of the IC. Neurophysiologically, the R command is associated with reciprocal changes in the membrane potentials of agonist and antagonist motoneurons while the C command is associated with their simultaneous depolarisation. These commands were investigated in single joint wrist movements by perturbation methods. Subjects normally made free flexion movements to a target at 30 degrees but on random trials they were either opposed by a spring-like load or assisted by a load. The former was generated using negative linear position feedback; the latter using positive position feedback to a torque motor. Subjects were instructed not to correct errors arising from perturbations. Both peak velocity and EMG patterns were strongly affected by load conditions. Subjects undershot or overshot the target when opposing or assisting loads were presented, respectively. However, after removing the load (700 ms later), the target position was regained indicating that the IC was stable despite the perturbation. In two other experiments, subjects initially trained to reach the target with opposing or assisting loads, while on random trials, the load was not presented. Depending on training conditions, the subject shifted the IC by different amounts. The slope of the IC varied independently of the magnitude of its positional shift. We conclude that R and C commands can be specified independently.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]