These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. Author: Limauro D, Pedone E, Pirone L, Bartolucci S. Journal: FEBS J; 2006 Feb; 273(4):721-31. PubMed ID: 16441659. Abstract: Bcp2 was identified as a putative peroxiredoxin (Prx) in the genome database of the aerobic hyperthermophilic archaeon Sulfolobus solfataricus. Its role in oxidative stress was investigated by transcriptional analysis of RNA isolated from cultures that had been stressed with various oxidant agents. Its specific involvement was confirmed by a considerable increase in the bcp2 transcript following induction with H2O2. The 5' end of the transcript was mapped by primer extension analysis and the promoter region was characterized. bcp2 was cloned and expressed in Escherichia coli, the recombinant enzyme was purified and the predicted molecular mass was confirmed. Using dithiothreitol as an electron donor, this enzyme acts as a catalyst in H2O2 reduction and protects plasmid DNA from nicking by the metal-catalysed oxidation system. Western blot analysis revealed that the Bpc2 expression was induced as a cellular adaptation in response to the addition of exogenous stressors. The results obtained indicate that Bcp2 plays an important role in the peroxide-scavaging system in S. solfataricus. Mutagenesis studies have shown that the only cysteine, Cys49, present in the Bcp2 sequence, is involved in the catalysis. Lastly, the presence of this Cys in the sequence confirms that Bcp2 is the first archaeal 1-Cysteine peroxiredoxin (1-Cys Prx) so far identified.[Abstract] [Full Text] [Related] [New Search]