These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. Author: Simkin AJ, Qian T, Caillet V, Michoux F, Ben Amor M, Lin C, Tanksley S, McCarthy J. Journal: J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665. Abstract: Coffee grains have an oil content between 10% and 16%, with these values associated with Coffea canephora (robusta) and C. arabica (arabica), respectively. As the majority of the oil stored in oil seeds is contained in specific structures called oil bodies, we were interested in determining whether there are any differences in the expression of the main oil body proteins, the oleosins, between the robusta and arabica varieties. Here, we present the isolation, characterization and quantitative expression analysis of six cDNAs representing five genes of the coffee oleosin family (CcOLE-1 to CcOLE-5) and one gene of the steroleosin family (CcSTO-1). Each coffee oleosin cDNA encodes for the signature structure for oleosins, a long hydrophobic central sequence containing a proline KNOT motif. Sequence analysis also indicates that the C-terminal domain of CcOLE-1, CcOLE-3 and CcOLE-5 contain an 18-residue sequence typical of H-form oleosins. Quantitative RT-PCR showed that the transcripts of all five oleosins were predominantly expressed during grain maturation in robusta and arabica grain, with CcOLE-1 and CcOLE-2 being more highly expressed. While the relative expression levels of the five oleosins were similar for robusta and arabica, significant differences in the absolute levels of expression were found between the two species. Quantitative analysis of oleosin transcripts in germinating arabica grain generally showed that the levels of these transcripts were lower in the grain after drying, and then further decreased during germination, except for a small spike of expression for CcOLE-2 early in germination. In contrast, the levels of CcSTO-1 transcripts remained relatively constant during germination, in agreement with suggestions that this protein is actively involved in the process of oil body turnover. Finally, we discuss the implications of the coffee oleosin expression data presented relative to the predicted roles for the different coffee oleosins during development and germination.[Abstract] [Full Text] [Related] [New Search]