These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Salt-dependent binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine to calf thymus DNA. Author: Mudasir, Wijaya K, Tri Wahyuni E, Yoshioka N, Inoue H. Journal: Biophys Chem; 2006 Apr 20; 121(1):44-50. PubMed ID: 16442696. Abstract: The salt-dependent binding of racemic iron(II) mixed-ligand complex containing 1,10-phenanthroline (phen) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), [Fe(phen)2(dppz)]2+ to calf thymus DNA (ct-DNA) has been characterized by UV-VIS spectrophotometric titration. The equilibrium binding constant (Kb) of the iron(II) complex to ct-DNA decreases with the salt concentration in the solution. The slope, SK=(deltalog Kb/deltalog [Na2+]) has been found to be 0.49, suggesting that, in addition to intercalation, considerable electrostatic interaction is also involved in the ct-DNA binding of [Fe(phen)2(dppz)]2+. The calculation of non-electrostatic binding constant (Kt(o)) based on polyelectrolyte theory has revealed that the non-electrostatic contribution to the total binding constant (Kb) increases significantly with the increase in [Na+] and reaches 36% at 0.1 M NaCl. On the other hand, the contribution of the non-electrostatic binding free energy (DeltaGt(o)) to the total binding free energy change (DeltaGo) is considerably large, i.e. 87% at [Na+]=0.1 M, suggesting that the stabilization of the DNA binding is mostly due to the contribution of non-electrostatic process. Moreover, the effect of specific ligand substitutions on DeltaGo has been rigorously evaluated using the quantity DeltaDeltaGt(o), i.e. the difference in DeltaGt(o) relative to that of the parent iron(II) complex, [Fe(phen)3]2+, indicating that each substitution of phen by dip and dppz contributes 7.5 and 17.5 kJ mol(-1), respectively to more favorable ct-DNA binding.[Abstract] [Full Text] [Related] [New Search]