These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy. Author: Sato T, Nishida H, Miyazaki M, Nakaya H. Journal: Diabetes Metab Res Rev; 2006; 22(5):341-7. PubMed ID: 16444778. Abstract: BACKGROUND: Mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel plays a key role in cardioprotection. Hence, a sulfonylurea that does not block mitoK(ATP) channels would be desirable to avoid damage to the heart. Accordingly, we examined the effects of sulfonylureas on the mitoK(ATP) channel and mitochondrial Ca(2+) overload. METHODS: Flavoprotein fluorescence in rabbit ventricular myocytes was measured to assay mitoK(ATP) channel activity. The mitochondrial Ca(2+) concentration was measured by loading cells with rhod-2. RESULTS: The mitoK(ATP) channel opener diazoxide (100 microM) reversibly increased flavoprotein oxidation to 31.8 +/- 4.3% (n = 5) of the maximum value induced by 2,4-dinitrophenol. Glimepiride (10 microM) alone did not oxidize the flavoprotein, and the oxidative effect of diazoxide was unaffected by glimepiride (35.4 +/- 3.2%, n = 5). Similarly, the diazoxide-induced flavoprotein oxidation was unaffected both by gliclazide (10 microM) and by tolbutamide (100 microM). Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca(2+) overload, and the intensity of rhod-2 fluorescence increased to 197.4 +/- 7.2% of baseline (n = 11). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca(2+) overload (149.6 +/- 5.1%, n = 11, p < 0.05 versus ouabain alone), and the effect was antagonized by the mitoK(ATP) channel blocker 5-hydroxydecanoate (189.8 +/- 27.8%, n = 5) and glibenclamide (193.1 +/- 7.7%, n = 8). On the contrary, cardioprotective effect of diazoxide was not abolished by glimepiride (141.8 +/- 7.8%, n = 6), gliclazide (139.0 +/- 9.4%, n = 5), and tolbutamide (141.1 +/- 4.5%, n = 7). CONCLUSIONS: Our results indicate that glimepiride, gliclazide, and tolbutamide have no effect on mitoK(ATP) channel, and do not abolish the cardioprotective effects of diazoxide. Therefore, these sulfonylureas, unlike glibenclamide, do not interfere with the cellular pathways that confer cardioprotection.[Abstract] [Full Text] [Related] [New Search]