These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Substrate specificity of an active dinuclear Zn(II) catalyst for cleavage of RNA analogues and a dinucleoside.
    Author: O'Donoghue A, Pyun SY, Yang MY, Morrow JR, Richard JP.
    Journal: J Am Chem Soc; 2006 Feb 08; 128(5):1615-21. PubMed ID: 16448134.
    Abstract:
    The cleavage of the diribonucleoside UpU (uridylyl-3'-5'-uridine) to form uridine and uridine (2',3')-cyclic phosphate catalyzed by the dinuclear Zn(II) complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (Zn(2)(1)(H(2)O)) has been studied at pH 7-10 and 25 degrees C. The kinetic data are consistent with the accumulation of a complex between catalyst and substrate and were analyzed to give values of k(c) (s(-)(1)), K(d) (M), and k(c)/K(d) (M(-)(1) s(-)(1)) for the Zn(2)(1)(H(2)O)-catalyzed reaction. The pH rate profile of values for log k(c)/K(d) for Zn(2)(1)(H(2)O)-catalyzed cleavage of UpU shows the same downward break centered at pH 7.8 as was observed in studies of catalysis of cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) and uridine-3'-4-nitrophenyl phosphate (UpPNP). At low pH, where the rate acceleration for the catalyzed reaction is largest, the stabilizing interaction between Zn(2)(1)(H(2)O) and the bound transition states is 9.3, 7.2, and 9.6 kcal/mol for the catalyzed reactions of UpU, UpPNP, and HpPNP, respectively. The larger transition-state stabilization for Zn(2)(1)(H(2)O)-catalyzed cleavage of UpU (9.3 kcal/mol) compared with UpPNP (7.2 kcal/mol) provides evidence that the transition state for the former reaction is stabilized by interactions between the catalyst and the C-5'-oxyanion of the basic alkoxy leaving group.
    [Abstract] [Full Text] [Related] [New Search]