These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. Author: Ramnanan CJ, Storey KB. Journal: J Exp Biol; 2006 Feb; 209(Pt 4):677-88. PubMed ID: 16449562. Abstract: Entry into the hypometabolic state of estivation requires a coordinated suppression of the rate of cellular ATP turnover, including both ATP-generating and ATP-consuming reactions. As one of the largest consumers of cellular ATP, the plasma membrane Na+/K+-ATPase is a potentially key target for regulation during estivation. Na+/K+-ATPase was investigated in foot muscle and hepatopancreas of the land snail Otala lactea, comparing active and estivating states. In both tissues enzyme properties changed significantly during estivation: maximal activity was reduced by about one-third, affinity for Mg.ATP was reduced (Km was 40% higher), and activation energy (derived from Arrhenius plots) was increased by approximately 45%. Foot muscle Na+/K+-ATPase from estivated snails also showed an 80% increase in Km Na+ and a 60% increase in Ka Mg2+ as compared with active snails, whereas hepatopancreas Na+/K+-ATPase showed a 70% increase in I50 K+ during estivation. Western blotting with antibodies recognizing the alpha subunit of Na+/K+-ATPase showed no change in the amount of enzyme protein during estivation. Instead, the estivation-responsive change in Na+/K+-ATPase activity was linked to posttranslational modification. In vitro incubations manipulating endogenous kinase and phosphatase activities indicated that Na+/K+-ATPase from estivating snails was a high phosphate, low activity form, whereas dephosphorylation returned the enzyme to a high activity state characteristic of active snails. Treatment with protein kinases A, C or G could all mediate changes in enzyme properties in vitro that mimicked the effect of estivation, whereas treatments with protein phosphatase 1 or 2A had the opposite effect. Reversible phosphorylation control of Na+/K+-ATPase can provide the means of coordinating ATP use by this ion pump with the rates of ATP generation by catabolic pathways in estivating snails.[Abstract] [Full Text] [Related] [New Search]