These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Attenuation of visceral nociception by alpha- and beta-amyrin, a triterpenoid mixture isolated from the resin of Protium heptaphyllum, in mice.
    Author: Lima-Júnior RC, Oliveira FA, Gurgel LA, Cavalcante IJ, Santos KA, Campos DA, Vale CA, Silva RM, Chaves MH, Rao VS, Santos FA.
    Journal: Planta Med; 2006 Jan; 72(1):34-9. PubMed ID: 16450293.
    Abstract:
    In the search for novel natural compounds effective against visceral nociception, the triterpenoid mixture alpha- and beta-amyrin, isolated from Protium heptaphyllum resin, was assessed in two established mouse models of visceral nociception. Mice were pretreated orally with alpha- and beta-amyrin (3, 10, 30, and 100 mg/kg) or vehicle, and the pain-related behavioral responses to intraperitoneal cyclophosphamide or to intracolonic mustard oil were analyzed. The triterpenoid mixture showed a dose-related significant antinociception against the cyclophosphamide-induced bladder pain, and at 100 mg/kg, the nociceptive behavioral expression was almost completely suppressed. Intracolonic mustard oil-induced nociceptive behaviors were maximally inhibited by 10 mg/kg alpha- and beta-amyrin mixture in a naloxone-reversible manner. While pretreatment with ruthenium red (3 mg/kg, s. c.), a non-specific transient receptor potential cation channel V1 (TRPV1) antagonist, also caused significant inhibition, the alpha (2)-adrenoceptor antagonist, yohimbine (2 mg/kg, s. c.), showed no significant effect. The triterpene mixture (10 mg/kg, p. o.) neither altered significantly the pentobarbital sleeping time, nor impaired the ambulation or motor coordination in open-field and rotarod tests, respectively, indicating the absence of sedative or motor abnormalities that could account for its antinociception. These results indicate that the antinociceptive potential of alpha- and beta-amyrin possibly involves the opioid and vanilloid (TRPV1) receptor mechanisms and further suggests that it could be useful to treat visceral pain of intestinal and pelvic origins.
    [Abstract] [Full Text] [Related] [New Search]