These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isopropylcyclopropane + OH gas phase reaction: a quantum chemistry + CVT/SCT approach. Author: Galano A, Cruz-Torres A, Alvarez-Idaboy JR. Journal: J Phys Chem A; 2006 Feb 09; 110(5):1917-24. PubMed ID: 16451025. Abstract: A theoretical study of the mechanism and kinetics of the OH hydrogen abstraction from isopropylcyclopropane (IPCP) is presented. Optimum geometries, frequencies and gradients have been computed at the BHandHLYP/6-311++G(d,p) level of theory for all stationary points, as well as for additional points along the minimum energy path (MEP). Energies have been improved by single-point calculations at the above geometries using CCSD(T)/6-311++G(d,p) to produce the potential energy surface. The rate coefficients are calculated for the temperature range 260-350 K by using canonical variational theory (CVT) with small-curvature tunneling (SCT) corrections. Our analysis suggests a stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel, for all the modeled paths. The reactant complexes are examined in detail, because they exhibit alkene-like structure. The excellent agreement between the overall calculated and experimental rate coefficients at 298 K supports the reliability of the parameters obtained for the temperature dependence and branching ratios of the IPCP + OH reaction, proposed here for the fist time. The expression that best describes the studied reaction is k(overall) = 6.15 x 10(-13)e1747/RT cm3 x molecule(-1) x s(-1). The predicted activation energy is -0.89 kcal/mol.[Abstract] [Full Text] [Related] [New Search]