These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopamine D1/5 receptor modulation of firing rate and bidirectional theta burst firing in medial septal/vertical limb of diagonal band neurons in vivo.
    Author: Fitch TE, Sahr RN, Eastwood BJ, Zhou FC, Yang CR.
    Journal: J Neurophysiol; 2006 May; 95(5):2808-20. PubMed ID: 16452256.
    Abstract:
    The medial septum/vertical limb of diagonal band complex (MS/vDB) consists of cholinergic, GABAergic, and glutamatergic neurons that project to the hippocampus and functionally regulate attention, memory, and cognitive processes. Using tyrosine hydroxlase (TH) immunocytochemistry and dark-field light microscopy, we found that the MS/vDB is innervated by a sparse network of TH-immunoreactive (putative catecholaminergic) terminals. MS/vDB neurons are known to fire in rhythmic theta burst frequency of 3-7 Hz to pace hippocampal theta rhythm. Extracellular single-unit recording in theta and non-theta firing MS/vDB neurons and antidromically identified MS/vDB-hippocampal neurons were made in urethan-anesthetized rats. Tail-pinch noxious stimuli and ventral tegmental area (VTA) stimulation (20 Hz) evoked spontaneous theta burst firing in MS/vDB neurons. Systemic D1/5 antagonists SCH23390 or SCH39166 (0.1 mg/kg iv) alone suppressed the spontaneous theta bursts, suggesting a tonic facilitatory endogenous dopamine D1 "tone" that modulates theta bursts in vivo. Activation of D1/5 receptor by dihydrexidine (10 mg/kg iv) led to an increase in mean firing rate in 60% of all theta and non-theta MS/vDB neurons with an increase in the number of theta bursts and spikes/burst in theta cells. In strong theta firing MS/vDB neurons, D1/5 receptor stimulation suppressed the occurrence of theta burst firing, whereas the overall increase in spontaneous mean firing rate remained. In low baseline theta MS/vDB neurons D1/5 receptor stimulation increases the occurrence of theta bursts along with a net increase in mean firing rate. Atropine injection consistently disrupts theta burst pattern and reduced the time spent in theta firing. Collectively, these data suggest that dopamine D1/5 stimulation enhances the mean firing rate of most MS/vDB neurons and also provides a state-dependent bidirectional modulation of theta burst occurrence. Some of these MS/vDB neurons may be cholinergic or GABAergic that may indirectly regulate theta rhythm in the hippocampus.
    [Abstract] [Full Text] [Related] [New Search]