These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anatomy of T cell autoimmunity to myelin oligodendrocyte glycoprotein (MOG): prime role of MOG44F in selection and control of MOG-reactive T cells in H-2b mice. Author: Ben-Nun A, Kerlero de Rosbo N, Kaushansky N, Eisenstein M, Cohen L, Kaye JF, Mendel I. Journal: Eur J Immunol; 2006 Feb; 36(2):478-93. PubMed ID: 16453383. Abstract: Myelin oligodendrocyte glycoprotein (MOG) is an important myelin target antigen, and MOG-induced EAE is now a widely used model for multiple sclerosis. Clonal dissection revealed that MOG-induced EAE in H-2(b) mice is associated with activation of an unexpectedly large number of T cell clones reactive against the encephalitogenic epitope MOG35-55. These clones expressed extremely diverse TCR with no obvious CDR3alpha/CDR3beta motif(s). Despite extensive TCR diversity, the cells required MOG40-48 as their common core epitope and shared MOG44F as their major TCR contact. Fine epitope-specificity analysis with progressively truncated peptides suggested that the extensive TCR heterogeneity is mostly related to differential recognition of multiple overlapping epitopes nested within MOG37-52, each comprised of a MOG40-48 core flanked at the N- and/or the C-terminus by a variable number of residues important for interaction with different TCR. Abrogation of both the encephalitogenic potential of MOG and T cell reactivity against MOG by a single mutation (MOG44F/MOG44A), together with effective down-regulation of MOG-induced EAE by MOG37-44A-52, confirmed in vivo the primary role for MOG44F in the selection/activation of MOG-reactive T cells. We suggest that such a highly focused T cell autoreactivity could be a selective force that offsets the extensive TCR diversity to facilitate a more "centralized control" of pathogenic MOG-related T cell autoimmunity.[Abstract] [Full Text] [Related] [New Search]