These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Author: Wu QS, Xia RX. Journal: J Plant Physiol; 2006 Mar; 163(4):417-25. PubMed ID: 16455355. Abstract: The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance.[Abstract] [Full Text] [Related] [New Search]