These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PET imaging of brain 5-HT1A receptors in rat in vivo with 18F-FCWAY and improvement by successful inhibition of radioligand defluorination with miconazole.
    Author: Tipre DN, Zoghbi SS, Liow JS, Green MV, Seidel J, Ichise M, Innis RB, Pike VW.
    Journal: J Nucl Med; 2006 Feb; 47(2):345-53. PubMed ID: 16455642.
    Abstract:
    UNLABELLED: 18F-FCWAY (18F-trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazin-1-yl)ethyl]-N-(2-pyridyl)cyclohexanecarboxamide) is useful in clinical research with PET for measuring serotonin 1A (5-HT1A) receptor densities in brain regions of human subjects but has significant bone uptake of radioactivity due to defluorination. The uptake of radioactivity in skull compromises the accuracy of measurements of 5-HT1A receptor densities in adjacent areas of brain because of spillover of radioactivity through the partial-volume effect. Our aim was to demonstrate with a rat model that defluorination of 18F-FCWAY may be inhibited in vivo to improve its applicability to measuring brain regional 5-HT1A receptor densities. METHODS: PET of rat head after administration of 18F-FCWAY was used to confirm that the distribution of radioactivity measured in brain is dominated by binding to 5-HT1A receptors and to reveal the extent of defluorination of 18F-FCWAY in vivo as represented by radioactivity (18F-fluoride ion) uptake in skull. Cimetidine, diclofenac, and miconazole, known inhibitors of CYP450 2EI, were tested for the ability to inhibit defluorination of 18F-FCWAY in rat liver microsomes in vitro. The effects of miconazole treatment of rats on skull radioactivity uptake and, in turn, its spillover on brain 5-HT1A receptor imaging were assessed by PET with venous blood analysis. RESULTS: PET confirmed the potential of 18F-FCWAY to act as a radioligand for 5-HT1A receptors in rat brain and also revealed extensive defluorination. In rat liver microsomes in vitro, defluorination of 18F-FCWAY was almost completely inhibited by miconazole and, to a less extent, by diclofenac. In PET experiments, treatment of rats with miconazole nitrate (60 mg/kg intravenously) over the 45-min period before administration of 18F-FCWAY almost obliterated defluorination and bone uptake of radioactivity. Also, brain radioactivity almost doubled while the ratio of radioactivity in receptor-rich ventral hippocampus to that in receptor-poor cerebellum almost tripled to 14. The plasma half-life of radioligand was also extended by miconazole treatment. CONCLUSION: Miconazole treatment, by eliminating defluorination of 18F-FCWAY, results in effective imaging of brain 5-HT1A receptors in rat. 18F-FCWAY PET in miconazole-treated rats can serve as an effective platform for investigating 5-HT1A receptors in rodent models of neuropsychiatric conditions or drug action.
    [Abstract] [Full Text] [Related] [New Search]