These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of subfornical organ neurons in rats through pre- and postsynaptic alpha-adrenoceptors.
    Author: Honda E, Ono K, Kataoka S, Inenaga K.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1646-53. PubMed ID: 16455764.
    Abstract:
    The effects of noradrenaline (NA) and its analogs on subfornical organ (SFO) neurons in rat slice preparations were investigated by using whole cell patch-clamp recording. In the current-clamp mode, the application of NA at 10-100 microM produced membrane depolarization (63%, 17 responsive neurons/27 neurons tested) and hyperpolarization (22%, 6/27 neurons). In the voltage-clamp mode, NA application at 1-100 microM produced inward currents (69%, 42/61 neurons) and outward currents (23%, 14/61 neurons). These currents remained in the presence of TTX or both glutamate and GABA receptor antagonists. In most of the neurons (25/31 neurons) showing inward currents in the presence of NA, the membrane conductance was not changed by voltage ramps or hyperpolarizing pulse stimulation. Similar responses were obtained by the application of the alpha1-agonist phenylephrine. The phenylephrine-induced inward currents were inhibited by the alpha1-antagonist prazosin. The alpha2-agonist clonidine decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (4/10 neurons). In addition, RT-PCR assay and immunohistochemical staining showed the existence of alpha1-adrenoceptors in the SFO. The results suggest that SFO neurons in rats are activated postsynaptically through alpha1-adrenoceptors and that the activation is enhanced by suppressing GABAergic inhibitory synaptic inputs through presynaptic alpha2-adrenoceptors.
    [Abstract] [Full Text] [Related] [New Search]