These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of K(+)-evoked [3H]D-aspartate release and neuronal calcium influx by verapamil, diltiazem and dextromethorphan: evidence for non-L/non-N voltage-sensitive calcium channels.
    Author: Mangano TJ, Patel J, Salama AI, Keith RA.
    Journal: Eur J Pharmacol; 1991 Jan 03; 192(1):9-17. PubMed ID: 1645678.
    Abstract:
    The effects of inhibitors of voltage-sensitive calcium channels (VSCC) on K(+)-evoked [3H]D-aspartate release from rat hippocampal slices and the K(+)-evoked increase in intracellular calcium in neocortical neurons in primary culture were examined. K+ caused a concentration-dependent release of [3H]D-aspartate that was approximately 85% dependent on the presence of extracellular calcium. Neither the marine snail toxin, omega-conotoxin GVIA, nor the dihydropyridine VSCC antagonist, nitrendipine, had any effect on K(+)-evoked release of [3H]D-aspartate. omega-Conotoxin GVIA and nitrendipine caused a relatively small (20-30%) inhibition of K(+)-evoked increase in intracellular calcium in neocortical neurons in primary culture. This suggests that K(+)-evoked [3H]D-aspartate release is not dependent on L- or N-type VSCC, whereas K(+)-evoked neuronal calcium influx was only partially dependent on L- and N-type VSCC. Verapamil, dextromethorphan and diltiazem caused a concentration-dependent inhibition of K(+)-evoked release of [3H]D-aspartate with IC50 values of 30, 100 and 120 microM, respectively. The K(+)-evoked increase in intracellular calcium was inhibited with essentially the same rank order of potency, but with slightly greater potencies (IC50 values for verapamil, diltiazem and dextromethorphan were 20, 50 and 50 microM, respectively). At 300 microM, neither verapamil, diltiazem nor dextromethorphan inhibited [3H]D-aspartate release evoked by the calcium ionophore ionomycin, suggesting that these compounds are not acting intracellularly to inhibit the ability of free cytosolic calcium to evoke release.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]