These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dietary docosahexaenoic acid alters pregnant rat reproductive tissue prostaglandin and matrix metalloproteinase production.
    Author: Perez MA, Hansen RA, Harris MA, Allen KG.
    Journal: J Nutr Biochem; 2006 Jul; 17(7):446-53. PubMed ID: 16457997.
    Abstract:
    Shortened gestation is a major cause of infant mortality and morbidity. Evidence from both human and animal studies suggests that essential fatty acids of the n-6 and n-3 series play important and modifiable roles in gestational duration. We examined the influence of linolenic acid (LnA) vs. docosahexaenoic acid (DHA) on rat reproductive tissue prostaglandin (PG) and matrix metalloproteinase (MMP) indices of gestational duration. By varying the oil source of the diet, AIN-93G diets were constructed to provide either 0.7 energy % (en%) LnA, the current US intake of n-3 fatty acids, or 0.7 en% DHA. In addition, enhanced levels of 2.0 en% LnA or 2.0 e% DHA diets were also constructed. All diets contained approximately 6.0 en% linoleic acid (LA), the current US intake of LA. Four groups of 10 female rats were time-mated and fed the respective diets from conception through Day 20 of gestation. Day 20 uterus and placenta DHA were significantly increased by 160-180% by the 0.7 en% DHA diet, and by 250-350% by the 2.0 en% DHA diets in comparison to 0.7 en% LnA diet. DHA diets also significantly reduced uterus and placenta arachidonic acid content. Day 20 placenta and uterus PGE(2) and placenta PGF(2alpha) production rates were significantly reduced by 27-47% in the 0.7 en% DHA group in comparison to 0.7 en% LnA. Increasing LnA to 2.0 en% was without effect. Providing DHA at the enhanced 2.0 en% did not significantly enhance the suppression of PG production. Placenta active MMP-2 and active MMP-9 (gelatinase) production was suppressed significantly by 30-43% in the 0.7 en% DHA group in comparison to the 0.7 en% LnA group, and 2.0 en% DHA did not enhance this suppression. Placenta collagenase activity comprising the sum of MMP-1, MMP-8 and MMP-13 was also suppressed by 60% in the 0.7 en% DHA diet group with no additional effect with 2.0 en% DHA provision. These results suggest that substituting DHA for LnA even at the current US n-3 fatty acid intake of 0.7 en% is effective in suppressing indices of premature delivery and shortened gestation. Increasing LnA intake by 3-fold to 2.0 en% is not effective. The form of dietary n-3 fatty acid, DHA vs. LnA, appears to be more important than the amount.
    [Abstract] [Full Text] [Related] [New Search]