These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Engineering of Escherichia coli L-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by L-cysteine. Author: Kai Y, Kashiwagi T, Ishikawa K, Ziyatdinov MK, Redkina EI, Kiriukhin MY, Gusyatiner MM, Kobayashi S, Takagi H, Suzuki E. Journal: Protein Eng Des Sel; 2006 Apr; 19(4):163-7. PubMed ID: 16459339. Abstract: L-Serine O-acetyltransferase (SAT) from Escherichia coli catalyzes the first step of L-cysteine synthesis in E.coli and is strictly inhibited by the second step product, L-cysteine. To establish a fermentation process to produce L-cysteine, we embarked on a mutational study of E.coli SAT to desensitize the feedback inhibition by L-cysteine. The crystal structure and the reaction mechanism of SAT from E.coli have shown that the substrate L-serine and the inhibitor L-cysteine bind to the identical region in the SAT protein. To decrease the affinity for only L-cysteine, we first built the structure model of L-serine-binding SAT on the basis of the crystal structure with bound L-cysteine and compared these two structures. The comparison showed that the Calpha of Asp92 underwent a substantial positional change upon the replacement of L-cysteine by L-serine. We then introduced various amino acid substitutions at positions 89-96 around Asp92 by randomized, fragment-directed mutagenesis to change the position of the Asp92. As a result, we successfully obtained mutant SATs which have both extreme insensitivity to an inhibition by L-cysteine (the concentration that inhibits 50% activity; IC(50) = 1,100 micromol/l, the inhibition constant; K(i) = 950.0 micromol/l) and extremely high emzymatic activities.[Abstract] [Full Text] [Related] [New Search]