These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the X2A1, A2B1, and X2Pi electronic states of the Ga2H molecule and the X2A' and A 2A" isomerization transition states connecting the three minima. Author: Wang H, Wang S, Yan G, Yamaguchi Y, Schaefer HF. Journal: J Chem Phys; 2006 Jan 28; 124(4):044309. PubMed ID: 16460164. Abstract: A wide range of highly correlated ab initio methods has been used to predict the geometrical parameters of the linear (X (2)Pi) and H-bridged (X (2)A(1) and A (2)B(1)) Ga(2)H isomers and two isomerization transition states (X (2)A(') and A (2)A(")) connecting the three minima. Dipole moments and vibrational frequencies are also obtained. The global minimum X (2)A(1) ground state of the H-bridged GaHGa isomer is predicted to lie only 1.6 [1.9 with the zero-point vibrational energy (ZPVE) corrections] kcal mol(-1) below the A (2)B(1) state. The X (2)A(1) state lies 5.4 kcal mol(-1) below the X (2)Pi ground state of the linear GaGaH isomer at the coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] level of theory with the augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set. The full triples coupled-cluster method is found to alter these CCSD(T) predictions by as much as 0.3 kcal mol(-1). The forward isomerization barriers from the linear ground state to the X (2)A(') and A (2)A(") transition states are determined to be 3.3 and 5.3 kcal mol(-1), respectively. The reverse isomerization barrier between the X (2)A(1) GaHGa structure and the X (2)Pi GaGaH structure is predicted to be 8.6 (8.2 with the ZPVE corrections) kcal mol(-1) at the aug-cc-pVQZ CCSD(T) level of theory.[Abstract] [Full Text] [Related] [New Search]