These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression of mRNAs encoding the putative inhibin co-receptor (betaglycan) and activin type-I and type-II receptors in preovulatory and prehierarchical follicles of the laying hen ovary. Author: Lovell TM, Knight PG, Gladwell RT. Journal: J Endocrinol; 2006 Feb; 188(2):241-9. PubMed ID: 16461550. Abstract: Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGFbeta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (approximately 40 mm). Ovaries were collected (n = 16) from mid-sequence hens maintained on a long-day photoschedule (16 h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of mRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0.05) in 8-9.9 mm follicles, whereas ActRIIA rose significantly from 6-7.9 mm to 8-9.9 mm, before falling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan mRNA expression rose 3-fold from 4-5.9 mm to 8-9.9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7.9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0.05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 mm to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActRIIA increased 2-fold from F2 to F1 (P < 0.05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before falling approximately 50% in the F1. In all follicles studied expression of betaglycan and ActRI (granulosa: r = 0.65, P < 0.001, n = 144/group; theca: r = 0.49, P < 0.001, n = 144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI, ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11.4-fold; ActRIIB, 5.1-fold; ActRI, 3.8-fold; ActRIIA, 2.8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.[Abstract] [Full Text] [Related] [New Search]