These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cardiac sarcomeric function, small G-protein signaling, and heart failure. Author: Vahebi S, Solaro RJ. Journal: Panminerva Med; 2005 Sep; 47(3):133-42. PubMed ID: 16462722. Abstract: Molecular signaling that induces cardiac hypertrophy and dilated cardiomyopathy and the transition to decompensation is complex and poorly understood. Extrinsic hemodynamic stresses such as hypertension as well as intrinsic stresses such as genetic defects in sarcomeric proteins and cytoskeletal proteins trigger the process. Both stresses lead to similar outcomes of altered contractility and eventually heart failure. Activation of G-protein coupled receptors initiates cascades of signaling pathways, which promote cardiac hypertrophy by phosphorylation of transcriptional factors and changes in gene expression. Stimulation of these signaling molecules also activates a variety of kinases and phosphatases that induce altered phosphorylation of myofilament proteins. In this review, we focused on these functional effects of small G-protein, Ras and Rho, signaling pathways that reside within the cytoplasm downstream of membrane receptors and upstream of the transcriptional factors. It has been demonstrated that phosphorylation of myofilament proteins alter mechano-energetics of myofilament and contractile function of the heart. Therefore, understanding the role of low molecular weight G-proteins in both cardiac and vascular biology has become particularly important in view of the development of specific inhibitors of effectors of small G-proteins such as p38 MAP kinase and Rho-dependent kinase.[Abstract] [Full Text] [Related] [New Search]