These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states.
    Author: Green MT.
    Journal: J Am Chem Soc; 2006 Feb 15; 128(6):1902-6. PubMed ID: 16464091.
    Abstract:
    To gain insight into the protonation state of enzymatic ferryl species we have examined the applicability of Badger's rule to heme and non-heme iron-oxygen bonds. Using density functional theory we have calculated r(e) and nu(e) for the Fe-O bonds of complexes with different axial ligands, iron-oxidation, oxygen-protonation, and spin states. Our results indicate that Badger's rule holds for heme and non-heme oxo and hydroxo complexes. We find that the long Fe-O bonds that have been reported in the crystal structures of the ferryl forms of myoglobin, horseradish peroxidase, cytochrome c peroxidase, and catalase deviate substantially from the values predicted by Badger's rule, while the short Fe-O bonds obtained from X-ray absorption measurements are in good agreement with Badger's rule. In light of our analysis we conclude that the ferryl forms of myoglobin, horseradish peroxidase, and cytochrome c peroxidase are authentic iron(IV)oxos with Fe-O bonds on the order of 1.66 A and pKa's < 4.
    [Abstract] [Full Text] [Related] [New Search]