These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics and mechanism of methane, methanol, and dimethyl ether C-H activation with electrophilic platinum complexes. Author: Owen JS, Labinger JA, Bercaw JE. Journal: J Am Chem Soc; 2006 Feb 15; 128(6):2005-16. PubMed ID: 16464102. Abstract: The relative rates of C-H activation of methane, methanol, and dimethyl ether by [(N-N)PtMe(TFE-d(3))](+) ((N-N) = ArN=C(Me)-C(Me)=NAr; Ar = 3,5-di-tert-butylphenyl, TFE-d(3) = CF(3)CD(2)OD) (2(TFE)) were determined. Methane activation kinetics were conducted by reacting 2(TFE)-(13)C with 300-1000 psi of methane in single-crystal sapphire NMR tubes; clean second-order behavior was obtained (k = 1.6 +/- 0.4 x 10(-3) M(-1) s(-1) at 330 K; k = 2.7 +/- 0.2 x 10(-4) M(-1) s(-1) at 313 K). Addition of methanol to solutions of 2(TFE) rapidly establishes equilibrium between methanol (2(MeOD)) and trifluoroethanol (2(TFE)) adducts, with methanol binding preferentially (K(eq) = 0.0042 +/- 0.0006). C-H activation gives [(N-N)Pt(CH(2)OD)(MeOD)](+) (4), which is unstable and reacts with [(RO)B(C(6)F(5))(3)](-) to generate a pentafluorophenyl platinum complex. Analysis of kinetics data for reaction of 2 with methanol yields k = 2.0 +/- 0.2 x 10(-3) M(-1) s(-1) at 330 K, with a small kinetic isotope effect (k(H)/k(D) = 1.4 +/- 0.1). Reaction of dimethyl ether with 2(TFE) proceeds similarly (K(eq) = 0.023 +/- 0.002, 313 K; k = 5.5 +/- 0.5 x 10(-4) M(-1) s(-1), k(H)/k(D) = 1.5 +/- 0.1); the product obtained is a novel bis(alkylidene)-bridged platinum dimer, [(diimine)Pt(mu-CH(2))(mu-(CH(OCH(3)))Pt(diimine)](2+) (5). Displacement of TFE by a C-H bond appears to be the rate-determining step for all three substrates; comparison of the second-order rate constants (k((methane))/k((methanol)) = 1/1.3, 330 K; k((methane))/k((dimethy)(l e)(ther)) = 1/2.0, 313 K) shows that this step is relatively unselective for the C-H bonds of methane, methanol, or dimethyl ether. This low selectivity agrees with previous estimates for oxidations with aqueous tetrachloroplatinate(II)/hexachloroplatinate(IV), suggesting a similar rate-determining step for those reactions.[Abstract] [Full Text] [Related] [New Search]