These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding and internalization of VIP in rat intestinal epithelial cells.
    Author: Izzo RS, Scipione RA, Pellecchia C, Lokchander RS.
    Journal: Regul Pept; 1991 Mar 26; 33(1):21-30. PubMed ID: 1646466.
    Abstract:
    We have prepared villous cells from the jejunum of the rat small intestine and studied the effects of divalent cations and bacitracin on the binding and internalization of VIP. Villous epithelial cells (4 x 10(6) cells/ml) were suspended in a Hepes-NaCl buffer with 1.0% BSA, (pH 7.4) and the cells were incubated for varying periods of time with 125I-VIP at 24 degrees C. Specific binding of radiolabeled VIP was maximal within 10 min (10%) and slowly declined to 9.0 percent after 30 min. In the presence of 1.0 mg/ml bacitracin, however, maximal specific binding of VIP was only 2.7 percent (P less than or equal to 0.001). The addition of CA2+ or Mg2+ to the buffer significantly decreased binding of VIP in a concentration dependent manner. At 8.0, 4.0, 2.0 and 1.0 mM Ca2+, binding of 125I-VIP decreased by 70, 60, 40 and 25 percent, whereas in the presence of the same concentrations of Mg2+ binding was decreased to 50, 38, 25 and 10 percent (P less than or equal to 0.01). To determine if epithelial cells internalize VIP, we bound 125I-VIP to villous cells and then differentiated surface-bound and internalized radioactivity by treating with trypsin (150 micrograms/ml). Surface bound radioligand was the same at both 24 and 4 degrees C (5.3%), while internalized 125I-VIP was 4.0% at 24 degrees C compared to only 1.0% at 4 degrees C (P less than or equal to 0.001). At 24 and 4 degrees C, both Ca2+ (4.0 mM) and Mg2+ (8.0 mM) decreased surface bound radioligand by 60 percent (P less than or equal to 0.01) and lowered internalized radioactivity. These data demonstrate that (1) bacitracin decreases the binding of VIP to small intestinal epithelial cells, (2) both Ca2+ and Mg2+ affect the binding of VIP to its surface receptor and (3) VIP is internalized into epithelial cells.
    [Abstract] [Full Text] [Related] [New Search]