These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Responsiveness of reorganized primary somatosensory (SI) cortex after local inactivation of normal SI cortex in chronic spinal cats.
    Author: Casanova C, McKinley PA, Molotchnikoff S.
    Journal: Somatosens Mot Res; 1991; 8(1):65-76. PubMed ID: 1646556.
    Abstract:
    The cortical map of adult cats that sustained spinal cord transection at T12 when they were 2 weeks old is characterized by a clear duplication of the representation of the forelimb, rostral trunk, and neck. The novel representation is located in the cortical region that is, in nonoperated animals, normally devoted to the hindlimb representation. We have investigated the possibility that the reactivation of the deprived hindlimb cortex may be mediated by corticocortical projections from normal to reorganized cortex. The primary somatosensory (SI) cortex was initially mapped to determine the boundaries of the normal and reorganized cortical representations. Somatotopically corresponding regions in both normal and reorganized cortex representing the trunk, the web space, or the shoulder were more precisely mapped. Inactivation of normal cortex was achieved by the nanoinjection of a solution of lidocaine hydrochloride stained with Chicago sky blue. Two major findings are described. First, inactivation of a circumscribed region of normal cortex representing a given receptive field (RF) failed to reduce or inhibit the responsiveness of a somatotopically corresponding RF represented in reorganized cortex. Therefore, it is unlikely that intracortical connections between normal and reorganized cortex could account for the reorganizational processes observed in cats that sustained spinal cord transection at 2 weeks of age. Second, the chemical blockade of normal cortex provoked an increase of the responsiveness and of the size of the peripheral RFs represented in reorganized cortex. This finding suggests that there are corticocortical connections (possibly topographically organized) between normal and reorganized cortex, and that these connections are inhibitory.
    [Abstract] [Full Text] [Related] [New Search]