These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ab initio determination of optical rotatory dispersion in the conformationally flexible molecule (R)-epichlorohydrin. Author: Tam MC, Crawford TD. Journal: J Phys Chem A; 2006 Feb 16; 110(6):2290-8. PubMed ID: 16466267. Abstract: Ab initio optical rotation data from linear-response coupled-cluster and density-functional methods are compared to both gas-phase and liquid-phase polarimetry data for the small, conformationally flexible molecule epichlorohydrin. Three energy minima exist along the C-C-C-Cl dihedral angle, each with strong, antagonistic specific rotations ranging from ca. -450 to +500 deg/[dm (g/mL)] at 355 nm. Density-functional theory (specifically the B3LYP functional) consistently overestimates the optical rotations of each conformer relative to coupled-cluster theory (in agreement with our earlier observations for conformationally rigid species), and we attribute this to density-functional theory's underestimation of the lowest-lying excitation energies of epichlorohydrin. Length- and velocity-gauge formulations of the coupled-cluster response function lead to slightly different specific rotations (ca. 7% at short wavelengths). We have determined well-converged Gibbs free energy differences among the conformers using complete-basis-set extrapolations of coupled-cluster energies including triple excitations to obtain Boltzmann-averaged specific rotations for comparison to the gas-phase results. The length-gauge coupled-cluster data agree remarkably well with experiment, with the velocity-gauge coupled-cluster and density-functional data bracketing the experimental results from below and above, respectively. Liquid-phase conformer populations reported earlier by Polavarapu and co-workers from combined infrared absorption and theoretical analyses differ markedly from the gas-phase populations, particularly for polar solvents. Nevertheless, Boltzmann-averaged specific rotations from both coupled-cluster and density-functional calculations agree well with the corresponding experimental intrinsic rotations, although the theoretical specific rotations for the individual conformers do not take solvent effects into account. PCM-based estimates of conformer populations lead to poor agreement with experiment.[Abstract] [Full Text] [Related] [New Search]