These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flow-force relationships during energy transfer between mitochondrial proton pumps. Author: Petronilli V, Persson B, Zoratti M, Rydström J, Azzone GF. Journal: Biochim Biophys Acta; 1991 Jun 17; 1058(2):297-303. PubMed ID: 1646634. Abstract: The effect of inhibitors of proton pumps, of uncouplers and of permeant ions on the relationship between input force, delta mu H+, and output flows of the ATPase, redox and transhydrogenase H(+)-pumps in submitochondrial particles was investigated. It is concluded that: (1) The decrease of output flow of the transhydrogenase proton pump, defined as the rate of reduction of NADP+ by NADH, is linearily correlated with the decrease of input force, delta mu H+, in an extended range of delta mu H+, independently of whether the H(+)-generating pump is the ATPase or a redox pump, or whether delta mu H+ is depressed by inhibitors of the H(+)-generating pump such as oligomycin or malonate, or by uncouplers. (2) The output flows of the ATPase and of the site I redox H(+)-pumps exhibit a steep dependence on delta mu H+. The flow-force relationships differ depending on whether the depression of delta mu H+ is induced by inhibitors of the H(+)-generating pump, by uncouplers or by lipophilic anions. (3) With the ATPase as H(+)-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by malonate than by uncouplers; the latter, however, are more inhibitory than lipophilic anions such as ClO4-. With redox site I as proton-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by oligomycin than by uncouplers; again, uncouplers are more inhibitory than ClO4-. (4) The results provide further support for a delocalized interaction of transhydrogenase with other H(+)-pumps.[Abstract] [Full Text] [Related] [New Search]