These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae.
    Author: Yoshino J, Tochinai S.
    Journal: Dev Growth Differ; 2006 Jan; 48(1):15-24. PubMed ID: 16466389.
    Abstract:
    Larvae of the South African clawed frog (Xenopus laevis) can regenerate the telencephalon, which consists of the olfactory bulb and the cerebrum, after it has been partially removed. Some authors have argued that the telencephalon, once removed, must be reconnected to the olfactory nerve in order to regenerate. However, considerable regeneration has been observed before reconnection. Therefore, we have conducted several experiments to learn whether or not reconnection is a prerequisite for regeneration. We found that the olfactory bulb did not regenerate without reconnection, while the cerebrum regenerated by itself. On the other hand, when the brain was reconnected by the olfactory nerve, both the cerebrum and the olfactory bulb regenerated. Morphological and histological investigation showed that the regenerated telencephalon was identical to the intact one in morphology, types and distributions of cells, and connections between neurons. Froglets with a regenerated telencephalon also recovered olfaction, the primary function of the frog telencephalon. These results suggest that the Xenopus larva requires reconnection of the regenerating brain to the olfactory nerve in order to regenerate the olfactory bulb, and thus the regenerated brain functions, in order to process olfactory information.
    [Abstract] [Full Text] [Related] [New Search]