These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modified two-layer preservation method (M-Kyoto/PFC) improves islet yields in islet isolation. Author: Noguchi H, Ueda M, Nakai Y, Iwanaga Y, Okitsu T, Nagata H, Yonekawa Y, Kobayashi N, Nakamura T, Wada H, Matsumoto S. Journal: Am J Transplant; 2006 Mar; 6(3):496-504. PubMed ID: 16468958. Abstract: Islet allotransplantation can achieve insulin independence in patients with type I diabetes. Recent reports show that the two-layer method (TLM), which employs oxygenated perfluorochemical (PFC) and UW solution, is superior to simple cold storage in UW for pancreas preservation in islet transplantation. However, UW solution has several disadvantages, including the inhibition of Liberase activity. In this study, we investigated the features of a new solution, designated M-Kyoto solution. M-Kyoto solution contains trehalose and ulinastatin as distinct components. Trehalose has a cytoprotective effect against stress, and ulinastatin inhibits trypsin. In porcine islet isolation, islet yield was significantly higher in the M-Kyoto/PFC group compared with the UW/PFC group. There was no significant difference in ATP content in the pancreas between the two groups, suggesting that different islet yields are not due to their differences as energy sources. Compared with UW solution, M-Kyoto solution significantly inhibited trypsin activity in the digestion step; moreover, M-Kyoto solution inhibited collagenase digestion less than UW solution. In conclusion, the advantages of M-Kyoto solution are trypsin inhibition and less collagenase inhibition. Based on these data, we now use M-Kyoto solution for clinical islet transplantation from nonheart-beating donor pancreata.[Abstract] [Full Text] [Related] [New Search]