These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of n-alkanes in water samples by means of headspace solvent microextraction and gas chromatography.
    Author: Zanjani MK, Yamini Y, Shariati S.
    Journal: J Hazard Mater; 2006 Aug 25; 136(3):714-20. PubMed ID: 16469436.
    Abstract:
    A simple and efficient headspace solvent microextraction (HSME) was developed for the simultaneous determination of the trace concentrations of some n-alkanes in water samples. Therefore, a microdrop of an organic solvent was extruded from the needle tip of a gas chromatographic syringe to the headspace above the surface of the solution in a sealed vial. Then the volatile organic compounds are extracted and concentrated in the microdrop. Next, the microdrop was retracted into the microsyringe and injected directly into the gas chromatograph. Experimental parameters which control the performance of HSME such as the type of microextraction solvent, organic drop and sample volume, sample stirring rate, sample solution and microsyringe needle temperatures, salt addition and exposure time profiles were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated. Using optimum extraction conditions, good linearity with correlation coefficients in the range of 0.995<r(2)<0.999, suitable precision (%2.3<R.S.D.<%7.2) and low detection limits (0.1-4.0 microg/l) were achieved. The HSME was performed for determination of n-alkanes in different types of natural water samples and acceptable recoveries were obtained. The results demonstrated that HSME is a rapid, accurate and effective sample preparation method and could be successfully applied for the determination of n-alkanes in water samples.
    [Abstract] [Full Text] [Related] [New Search]