These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice.
    Author: Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, Shin HY, Lee BI, Kim GW.
    Journal: Neurosci Lett; 2006 May 08; 398(3):195-200. PubMed ID: 16469440.
    Abstract:
    Although minocycline has been generally thought to have neuroprotective properties, the neuroprotective role of minocycline has not been investigated in the animal model of epilepsy. In this study, we investigated whether minocycline is neuroprotective against kainic acid (KA)-induced cell death through the caspase-dependent or -independent mitochondrial apoptotic pathways. Adult male ICR mice were subjected to seizures by intrahippocampal KA injection with vehicle or with minocycline. For cell death analysis, TdT-mediated dUTP-biotin nick end labeling and cresyl-violet staining were performed. Western blot analysis and immunofluorescent staining for cytochrome c and apoptosis-inducing factor (AIF) were performed. Cell death was reduced in minocycline-treated mice. Cytosolic translocation of cytochrome c and subsequent activation of caspase-3 were diminished by minocycline treatment. AIF nuclear translocation and subsequent large-scale DNA fragmentation were also reduced in minocycline-treated mice. Thus, this study suggests that minocycline inhibits both caspase-dependent and -independent apoptotic pathways and may be neuroprotective against hippocampal damage after KA treatment.
    [Abstract] [Full Text] [Related] [New Search]