These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role for ionotropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex. Author: Baird JG, Challiss RA, Nahorski SR. Journal: Mol Pharmacol; 1991 Jun; 39(6):745-53. PubMed ID: 1646948. Abstract: The actions of the excitatory amino acid quisqualate (QA) on inositol polyphosphate accumulation in cerebral cortex slices have been assessed using both [3H]inositol prelabeling and mass measurements over relatively short incubation periods. QA stimulated accumulation of all the inositol polyphosphates, with similar EC50 values (2.8 +/- 0.7 microM). High performance liquid chromatography analysis of isomeric forms of inositol polyphosphates and specific mass assays revealed that both phosphorylation and dephosphorylation products of inositol-1,4,5-trisphosphate accumulate. A large component of the QA-stimulated inositol polyphosphate accumulation was inhibited by the ionotropic antagonist 6,7-dinitroquinoxaline-2,3-dione in a competitive manner. This implied that the QA response may be due to entry of Ca2+ via voltage-sensitive calcium channels as a consequence of an ionotropic receptor-induced depolarization. In support of this mechanism, the QA-induced response was dependent on the presence of extracellular calcium, whereas the well characterized muscarinic receptor agonist response to carbachol showed only a slight reduction under the same conditions. The concentration-dependent (EC50 8.8 +/- 3 microM) response to the selective ionotropic agonist amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) differed from that to QA or carbachol, in that accumulation of only [3H]inositol mono- and bisphosphates was stimulated, with no increase in the [3H]inositol tris- or tetrakisphosphates. Use of the metabotropic agonist (trans)-(+/-)-1-aminocyclopentyl-1,3-dicarboxylate (ACPD), however, produced concentration-dependent increases in all [3H]inositol polyphosphates. Although both AMPA and ACPD responses alone were smaller in magnitude than that to QA, when present together AMPA and ACPD produced additive responses on [3H]inositol mono- and bisphosphate and a marked synergistic increase in [3H]inositol tetrakisphosphate accumulation, resulting in a response similar to that seen for QA. These data suggest that QA-evoked responses in rat cortex slices are the result of a complex interaction mediated through both ionotropic and metabotropic receptors, in which Ca2+ entry may stimulate accumulation of inositol mono- and bisphosphate directly and divert the metabolism of inositol-1,4,5-trisphosphate to inositol-1,3,4,5-tetrakisphosphate.[Abstract] [Full Text] [Related] [New Search]