These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycopeptide synthesis through endo-glycosidase-catalyzed oligosaccharide transfer of sugar oxazolines: probing substrate structural requirement. Author: Zeng Y, Wang J, Li B, Hauser S, Li H, Wang LX. Journal: Chemistry; 2006 Apr 12; 12(12):3355-64. PubMed ID: 16470771. Abstract: An array of sugar oxazolines was synthesized and tested as donor substrates for the Arthrobacter endo-beta-N-acetylglucosaminidase (Endo-A)-catalyzed glycopeptide synthesis. The experiments revealed that the minimum structure of the donor substrate required for Endo-A catalyzed transglycosylation is a Man beta1-->4-GlcNAc oxazoline moiety. Replacement of the beta-D-Man moiety with beta-D-Glc, beta-D-Gal, and beta-D-GlcNAc monosaccharides resulted in the loss of substrate activity for the disaccharide oxazoline. Despite this, the enzyme could tolerate modifications such as attachment of additional sugar residues or a functional group at the 3- and/or 6-positions of the beta-D-Man moiety, thus allowing a successful transfer of selectively modified oligosaccharides to the peptide acceptor. On the other hand, the enzyme has a great flexibility for the acceptor portion and could take both small and large GlcNAc-peptides as the acceptor. The studies implicate a great potential of the endoglycosidase-catalyzed transglycosylation for constructing both natural and selectively modified glycopeptides.[Abstract] [Full Text] [Related] [New Search]