These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improvement of Fe/MgO catalysts by calcination for the growth of single- and double-walled carbon nanotubes. Author: Ning G, Wei F, Wen Q, Luo G, Wang Y, Jin Y. Journal: J Phys Chem B; 2006 Jan 26; 110(3):1201-5. PubMed ID: 16471664. Abstract: Calcination at 900-1000 degrees C for 8-12 h of an Fe/MgO catalyst prepared by impregnation was found to result in a uniform MgFe2O4/MgO solid solution that showed a successful settling of well-dispersed iron species into the MgO lattice. During methane reduction, many iron-containing particles with a diameter of about 4 nm were formed on the catalyst surface to provide numerous active sites for the growth of single- and double-walled carbon nanotubes. There was a significant improvement of the Fe/MgO catalyst that resulted in a high yield of impurity-free nanotubes. Using C2H4 cracking at 600 degrees C and transmission electron microscope observations, the Fe species distribution in the catalysts and microscope images of nanotube growth were described in detail. H2 reduction of the calcined Fe/MgO catalyst was found to cause the formation of iron layers on the catalyst surface, which resulted in the growth of only carbon layers. The results are useful for understanding changes in the metal species distribution in the catalysts and the nanotube growth mechanism, and they provide a simple method to improve Fe/MgO catalysts.[Abstract] [Full Text] [Related] [New Search]