These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli. Author: Hill MA, Kaufmann K, Otero J, Preiss J. Journal: J Biol Chem; 1991 Jul 05; 266(19):12455-60. PubMed ID: 1648099. Abstract: Site-directed mutagenesis was used to explore the role of Lys-195 in ADP-glucose pyrophosphorylase from Escherichia coli. This residue, which is conserved in every bacterial and plant source sequenced to date, was originally identified as a potential catalytic site residue by covalent modification studies. Mutation of Lys-195 to glutamine produces an enzyme whose Km for glucose 1-phosphate is 600-fold greater than that measured for the wild-type enzyme. The effect on glucose 1-phosphate is very specific since kinetic constants measured for ATP, Mg2+, and the allosteric activator, fructose 1,6-bisphosphate, are unchanged relative to those measured for the wild-type enzyme. Furthermore, the catalytic rate constant, Kcat, for the glutamine mutant is similar to that of the wild-type enzyme. Taken together, the results suggest a role for Lys-195 in binding of glucose 1-phosphate and exclude its role as a participant in the rate-determining step(s) in the catalytic reaction mechanism. To further study the effect of charge, shape, size, and hydrophobicity of the amino acid residue at position 195, a series of mutants were prepared including arginine, histidine, isoleucine, and glutamic acid. In every case, the kinetic constants measured for ATP, Mg2+, and fructose 1,6-bisphosphate were similar to wild-type constants, reinforcing the notion that this residue is responsible for a highly localized effect at the glucose 1-phosphate-binding site and also suggesting that the protein can accommodate a wide range of substitutions at this position without losing its global folding properties. Thermal stability measurements corroborate this finding. The mutations did, however, produce a range of glucose 1-phosphate Km values from 100- to 10,000-fold greater than wild-type, which indicate that both size and charge properties of lysine are essential for proper binding of glucose 1-phosphate at the catalytic site. AMP binding was also affected by the nature of the mutation at position 195. A model for glucose 1-phosphate, ATP, and AMP binding is presented.[Abstract] [Full Text] [Related] [New Search]