These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of enhanced activity on synaptic transmission in mouse extensor digitorum longus muscle.
    Author: Dorlöchter M, Irintchev A, Brinkers M, Wernig A.
    Journal: J Physiol; 1991 May; 436():283-92. PubMed ID: 1648130.
    Abstract:
    1. Transmitter release at neuromuscular junctions of extensor digitorum longus (EDL) muscle in mice was studied after 2-8 month periods of unforced running in wheels. 2. Intracellular recordings at 10 Hz stimulation revealed that the quantal content of endplate potentials (EPPs) in Mg(2+)-blocked preparations was larger by 30% in trained (mean number of quanta, m = 1.75 +/- 0.19, n = 7) than in untrained control EDL muscles (m = 1.35 +/- 0.35, n = 7). Similarly the amplitudes of the first, maximum and plateau EPPs during tetanic stimulation (100 Hz for 1 s or 400 ms) in curare-blocked preparations were increased by 28% each; muscle fibre diameters did not differ while other postsynaptic effects were not excluded. 3. Training effects became particularly evident in two pairs of monozygotic twins, in which the time courses of facilitation and depression were changed as well: at 100 Hz stimulation the maximum EPP amplitude was reached on average at 2.6 impulses in controls but at 2.0 impulses in runners, and the following decline below the value of the first EPP at 5.0 and 3.8 impulses respectively. 4. Block resistance, as monitored by isometric tension measurements in different presynaptic (Mg2+) and postsynaptic (curare) blocking solutions, was higher in trained than in control EDL muscles. Depression in a train of four nerve-evoked single twitches at 2 Hz was lower. 5. As expected from the unchanged fibre diameters (see above) isometric tetanic force was similar in trained and control EDL muscles. Muscle fatigue resistance was larger in trained animals and succinic dehydrogenase activity was higher in fibres of trained muscles indicating an endurance training of the EDL muscle. 6. It is concluded that besides changes in muscle fibre properties, prolonged elevated activity causes increased transmitter release in EDL muscles. As a consequence, the safety margin of transmission in trained EDL muscles is markedly elevated.
    [Abstract] [Full Text] [Related] [New Search]